Stanley G. Benjamin authored and/or contributed to the following articles/publications.
Because of a wide recognition within the wind energy and electric utility operations communities that inadequate wind energy forecasting skill is placing a strain on the effective integration of wind energy onto the nation's electrical grids, The U.S. Department of Energy has implemented a joint research program with NOAA and private industry to...
Starting in June of 2009, ESRL GSD began creating a real-time experimental probabilistic thunderstorm guidance product based on the High Resolution Rapid Refresh (HRRR). The HRRR (Weygandt et al, this conference) is an hourly updating, convection resolving model run over a domain covering the eastern 2/3 of the United States. The HRRR utilizes a...
The analysis and forecast domain of the real-time experimental Rapid Refresh (RR) system (scheduled to replace the NCEP operational Rapid Update Cycle in 2010) covers all of North America, a significant expansion compared to the CONUS domain coverage of the Rapid Update Cycle (RUC). Associated with this domain expansion is the necessity to inclu...
Toward using NWP model ensemble data for strategic planning of the national airspace
Weather forecasting is increasingly relying on high-resolution and ensemble numerical weather prediction (NWP) model data. Efforts are underway to develop convective weather products utilizing high-resolution model ensembles for strategic planning of the National Airspace (NAS). The FAA Aviation Weather Research Program (AWRP) is currently fundi...
A rare event occurred over Oklahoma in August 2007 when Atlantic tropical storm Erin (2007) re-intensified over western Oklahoma three days after making a landfall. The storm re-developed an eye, an eye wall structure and spiral rain bands after weakening significantly over western Texas, producing strong winds and heavy flooding that claimed se...
Despite a significant research effort over the past two decades, the prediction of convective storms and the associated warm season precipitation prediction problem remains a formidable modeling and assimilation challenge. The large forecast uncertainty associated with convective situations, even at very short lead times, coupled with the severi...
The RTMA background - hourly downscaling of RUC data to 5-km detail
In spring 2006, an initial version of the 5-km downscaling of RUC data for the CONUS Real-Time Mesoscale Analysis (RTMA) was implemented at the National Centers for Environmental Prediction. Since that time, the RUC downscaling techniques within the RUC post-processing have been refined several times, based on daily reviews by forecasters within...
Short-range numerical weather prediction using time-lagged ensembles
A time-lagged ensemble forecast system is developed using a set of hourly initialized Rapid Update Cycle model deterministic forecasts. Both the ensemble-mean and probabilistic forecasts from this time-lagged ensemble system present a promising improvement in the very short-range weather forecasting of 1–3 h, which may be useful for aviation wea...
Performance of RUC13 and WRFRUC13 forecasts for the AIRS-2 11 November 2003 icing case
Comparison of RUC condensate analyses and forecasts with satellite-derived cloud properties
Evaluation of the RUC-initialized WRF for its application in the Rapid Refresh at NCEP
OBSERVATION SENSITIVITY EXPERIMENTS USING THE RAPID UPDATE CYCLE
Performance of the FSL RUC-initialized WRF over the CONUS Domain
PRELIMINARY RESULTS OF WRF MODEL PERFORMANCE AS A STEP TOWARDS THE NCEP RAPID REFRESH
RUC Model-Based Convective Probability Forecasts
The increasing utilization of the National Air Space has led to a growing need for thunderstorm likelihood information with a forecast lead-time of several hours. This information is needed as guidance to aviation meteorologists and traffic flow managers as they work together to make strategic (2-6 h) aircraft routing decisions to optimize air t...
A variational assimilation technique in a hybrid isentropic-sigma coordinate
A three-dimensional variational (3dVAR) analysis set in a generalized vertical coordinate is described. This analysis technique has been applied to the Rapid Update Cycle (RUC), a mesoscale analysis/model system in the United States providing high-frequency, short-range forecasts. The RUC 3dVAR analysis is, in fact, set in a hybrid isentropic-...
Verification of RUC Surface Forecasts at Major U.S. Airport Hubs
HIGH-RESOLUTION RUC FORECASTS FOR PACJET: REAL-TIME NWS GUIDANCE AND RETROSPECTIVE DATA IMPACT TESTS
The Role of Ground-Based GPS Meteorological Observations in Numerical Weather Prediction
CLOUD/HYDROMETEOR INITIALIZATION FOR THE 20-KM RUC USING SATELLITE AND RADAR DATA
VERIFICATION OF 20-KM RUC SURFACE AND PRECIPITATION FORCASTS
As part of an investigation into terminal airspace productivity sponsored by the NASA Ames Research Center, a study was performed at the Forecast Systems Laboratory to investigate sources of wind forecast error and to assess differences in wind forecast accuracy between the 60-km Rapid Update Cycle, version 1 (RUC-1), and the newer 40-km RUC-2. ...
Parameterization of cold-season processes in the MAPS land-surface scheme
A coupled atmospheric/land-surface model covering the conterminous United States with an associated 1-hour atmospheric data assimilation cycle, the Mesoscale Analysis and Prediction System (MAPS), has been improved to include a snow accumulation/melting scheme and also parameterization of processes in frozen soil. The new aspects of the land-s...
Use of a mixed-phase microphysics scheme in the operational NCEP Rapid Update Cycle
Wind prediction accuracy for air traffic management decision support tools
Assimilation of cloud-top pressure derived from GOES sounder data into MAPS/RUC
An initial RUC cloud analysis assimilating GOES cloud-top data
Verification of RUC-2 precipitation forecasts using the NCEP multisensor analysis
Parameterization of frozen soil physics in MAPS and its effect on hydrological cycle components
Forecast performance of a prognostic turbulence formulation implemented in the MAPS/RUC model
Impact of snow physics parameterization on short-range forecasts of skin temperature in MAPS/RUC
The combined use of GOES cloud drift, ACARS, VAD, and Profiler winds in RUC-2
Institution National Oceanic and Atmospheric Administration - NOAA
Progress on FIM development toward membership in the North American Ensemble Forecast System
Institution National Oceanic and Atmospheric Administration - NOAA
100 Years of Progress in Forecasting and NWP Applications
Over the past 100 years, the collaborative effort of the international science community, including government weather services and the media, along with the associated proliferation of environmental observations, improved scientific understanding, and growth of technology, has radically transformed weather forecasting into an effective global a...
Institution National Oceanic and Atmospheric Administration - NOAA
Improvements to Lake-Effect Snow Forecasts Using a One-Way Air–Lake Model Coupling Approach
Lake-effect convective snowstorms frequently produce high-impact, hazardous winter weather conditions downwind of the North American Great Lakes. During lake-effect snow events, the lake surfaces can cool rapidly, and in some cases, notable development of ice cover occurs. Such rapid changes in the lake-surface conditions are not accounted for i...
Institution National Oceanic and Atmospheric Administration - NOAA
Representing shallow cumulus in numerical weather prediction and climate models is a significant challenge. Misrepresenting these subgrid-scale clouds can result in large errors in the downwelling shortwave radiative flux at surface, resulting in large errors in the surface temperature that results in feedbacks into the accuracy of the thermodyn...
Institution National Oceanic and Atmospheric Administration - NOAA
The High Resolution Rapid Refresh (HRRR) assimilates radar reflectivity information in order to skillfully forecast convection. This assimilation is done using an empirical relationship between reflectivity and latent heat release from hydrometeor condensation and freezing to update the temperature tendency field. The temperature tendency field ...
Institution National Oceanic and Atmospheric Administration - NOAA
The Bay Area Flood Protection Association has just recently begun funding the Physical Sciences Division and Global Systems Division (GSD) of NOAA’s Earth System Research Lab (NOAA-ESRL), as well as the NOAA Cooperative Institute for Research in the Atmosphere (CIRA), to design and build a specialized nowcast / forecast system for the 9 Californ...
Institution National Oceanic and Atmospheric Administration - NOAA
Addressing Common Cloud - Radiation Errors from ~4-hour to 4-week Model Prediction
Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of ...
Institution National Oceanic and Atmospheric Administration - NOAA
Institution National Oceanic and Atmospheric Administration - NOAA
A Comparison of Temperature and Wind Measurements from ACARS-Equipped Aircraft and Rawinsondes
A comparison was made of temperature and wind observations reported by rawinsonde and Aircraft Communications, Addressing, and Reporting System (ACARS)-equipped commercial aircraft separated by less than 150 km in distance and 90 min in time near Denver, Colorado, in February and March 1992. Only data made on aircraft ascents and descents repor...
Institution National Oceanic and Atmospheric Administration - NOAA
Commercial-Aircraft-Based Observations for NWP: Global Coverage, Data Impacts, and COVID-19
Weather observations from commercial aircraft constitute an essential component of the global observing system and have been shown to be the most valuable observation source for short-range numerical weather prediction (NWP) systems over North America. However, the distribution of aircraft observations is highly irregular in space and time. In t...
Institution National Oceanic and Atmospheric Administration - NOAA
A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) operational application. The system borrows data processing and observation operators from the gridpoint statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root Kalman filter (EnSRF) algorithm is ...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar) data assimilation (DA) system is developed for the operational Rapid Refresh (RAP) forecasting system. The En3DVar hybrid system employs the extended control variable method, and is built on the NCEP operational gridpoint statistical interpolation...
Institution National Oceanic and Atmospheric Administration - NOAA
Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range Weather Prediction
Accurate cloud and precipitation forecasts are a fundamental component of short-range data assimilation/model prediction systems such as the NOAA 3-km High-Resolution Rapid Refresh (HRRR) or the 13-km Rapid Refresh (RAP). To reduce cloud and precipitation spinup problems, a nonvariational assimilation technique for stratiform clouds was develope...
Institution National Oceanic and Atmospheric Administration - NOAA
U.S. National Weather Service (NWS) forecasters assess and communicate hazardous weather risks, including the likelihood of a threat and its impacts. Convection-allowing model (CAM) ensembles offer potential to aid forecasting by depicting atmospheric outcomes, including associated uncertainties, at the refined space and time scales at which haz...
Institutions National Center for Atmospheric Research - NCAR National Oceanic and Atmospheric Administration - NOAA
Developing and improving numerical weather prediction models such as the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) requires a well-designed, easy-to-use evaluation capability using observations. Owing to the very complex nonlinear interactions between the data assimilation system and the representation of various physics compo...
Institution National Oceanic and Atmospheric Administration - NOAA
Subgrid variability of snow is important in studying surface-atmosphere interactions as it affects grid-scale processes. However, this dynamic variability is currently not well-represented in most land-surface models (LSMs). A stochastic snow model using the Fokker-Planck Equation (FPE) has been developed specifically for representing subgrid va...
Institution National Oceanic and Atmospheric Administration - NOAA
Subgrid variability of solar downward radiation at the surface can be important in estimating subgrid variability of other radiation-driven variables, such as snowmelt and soil temperature. However, this information is ignored in current hydrological and weather prediction models as only the mean downward solar radiation of model grid is used. I...
Institution National Oceanic and Atmospheric Administration - NOAA
Spurious mountain-wave features have been reported as false alarms of light-or-stronger numerical weather prediction (NWP)-based cruise level turbulence forecasts especially over the western mountainous region of North America. To reduce this problem, a hybrid sigma-pressure vertical coordinate system was implemented in NOAA’s operational Rapid ...
Institution National Oceanic and Atmospheric Administration - NOAA
The Subseasonal Experiment (SubX): A Multimodel Subseasonal Prediction Experiment
The Subseasonal Experiment (SubX) is a multimodel subseasonal prediction experiment designed around operational requirements with the goal of improving subseasonal forecasts. Seven global models have produced 17 years of retrospective (re)forecasts and more than a year of weekly real-time forecasts. The reforecasts and forecasts are archived at ...
Institution National Oceanic and Atmospheric Administration - NOAA
A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Ini...
Institution National Oceanic and Atmospheric Administration - NOAA
To advance the understanding of meteorological processes in offshore coastal regions, the spatial variability of wind profiles must be characterized and uncertainties (errors) in NWP model wind forecasts quantified. These gaps are especially critical for the new offshore wind energy industry, where wind profile measurements in the marine atmosph...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
In association with the Department of Energy–funded Position of Offshore Wind Energy Resources (POWER) project, we present results from compositing a 3-year dataset of 80-m (above ground level) wind forecasts from the 3-km High-Resolution Rapid Refresh (HRRR) model over offshore regions for the contiguous United States. The HRRR numerical weathe...
Institution National Oceanic and Atmospheric Administration - NOAA
This study investigates the subseasonal variability of anticyclonic Rossby wave breaking (AWB) and its impacts on atmospheric circulations and tropical cyclones (TCs) over the North Atlantic in the warm season from 1985 to 2013. Significant anomalies in sea level pressure, tropospheric wind, and humidity fields are found over the tropical–subtro...
Institution National Oceanic and Atmospheric Administration - NOAA
The atmospheric hydrostatic Flow-Following Icosahedral Model (FIM), developed for medium-range weather prediction, provides a unique three-dimensional grid structure—a quasi-uniform icosahedral horizontal grid and an adaptive quasi-Lagrangian vertical coordinate. To extend the FIM framework to subseasonal time scales, an icosahedral-grid renditi...
Institution National Oceanic and Atmospheric Administration - NOAA
Subseasonal forecast skill of the global hydrostatic atmospheric Flow-Following Icosahedral Model (FIM) coupled to an icosahedral-grid version of the Hybrid Coordinate Ocean Model (iHYCOM) is evaluated through 32-day predictions initialized weekly using a four-member time-lagged ensemble over the 16-yr period 1999–2014. Systematic biases in fore...
Institution National Oceanic and Atmospheric Administration - NOAA
Evaluation of MJO Predictive Skill in Multiphysics and Multimodel Global Ensembles
Monthlong hindcasts of the Madden–Julian oscillation (MJO) from the atmospheric Flow-following Icosahedral Model coupled with an icosahedral-grid version of the Hybrid Coordinate Ocean Model (FIM-iHYCOM), and from the coupled Climate Forecast System, version 2 (CFSv2), are evaluated over the 12-yr period 1999–2010. Two sets of FIM-iHYCOM hindcas...
Institution National Oceanic and Atmospheric Administration - NOAA
The Rapid Refresh (RAP) is an hourly updated regional meteorological data assimilation/short-range model forecast system running operationally at NOAA/National Centers for Environmental Prediction (NCEP) using the community Gridpoint Statistical Interpolation analysis system (GSI). This paper documents the application of the GSI three-dimensiona...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
A set of observation system experiments (OSEs) over three seasons using the hourly updated Rapid Refresh (RAP) numerical weather prediction (NWP) assimilation–forecast system identifies the importance of the various components of the North American observing system for 3–12-h RAP forecasts. Aircraft observations emerge as the strongest-impact ob...
Institution National Oceanic and Atmospheric Administration - NOAA
A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique datas...
Institution National Oceanic and Atmospheric Administration - NOAA
A stochastic parameter perturbation (SPP) scheme consisting of spatially and temporally varying perturbations of uncertain parameters in the Grell–Freitas convective scheme and the Mellor–Yamada–Nakanishi–Niino planetary boundary scheme was developed within the Rapid Refresh ensemble system based on the Weather Research and Forecasting Model. Al...
Institutions National Center for Atmospheric Research - NCAR National Oceanic and Atmospheric Administration - NOAA
This study describes the initial application of radiance bias correction and channel selection in the hourly updated Rapid Refresh model. For this initial application, data from the Atmospheric Infrared Sounder (AIRS) are used; this dataset gives atmospheric temperature and water vapor information at higher vertical resolution and accuracy than ...
Institution National Oceanic and Atmospheric Administration - NOAA
Satellite Radiance Data Assimilation within the Hourly Updated Rapid Refresh
Assimilation of satellite radiance data in limited-area, rapidly updating weather model/assimilation systems poses unique challenges compared to those for global model systems. Principal among these is the severe data restriction posed by the short data cutoff time. Also, the limited extent of the model domain reduces the spatial extent of satel...
Institution National Oceanic and Atmospheric Administration - NOAA
Evaluation of model skill in predicting winds over the ocean was performed by comparing retrospective runs of numerical weather prediction (NWP) forecast models to shipborne Doppler lidar measurements in the Gulf of Maine, a potential region for U.S. coastal wind farm development. Deployed on board the NOAA R/V Ronald H. Brown during a 2004 fiel...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions
Since its initial release in 2000, the Weather Research and Forecasting (WRF) Model has become one of the world’s most widely-used numerical weather prediction models. Designed to serve both research and operational needs, it has grown to offer a spectrum of options and capabilities for a wide range of applications. In addition, it underlies a n...
Institutions National Center for Atmospheric Research - NCAR National Oceanic and Atmospheric Administration - NOAA
Diagnostic fields developed for hourly updated NOAA weather models
This document describes methods for diagnosing non-prognostic variables from explicit prognostic variables from hourly updated NOAA models. Many of these diagnostics have been developed for specific forecast applications for downstream forecast users over the years; these variables have been output from the Rapid Update Cycle (RUC) model prior t...
Institution National Oceanic and Atmospheric Administration - NOAA
Complex-terrain locations often have repeatable near-surface wind patterns, such as synoptic gap flows and local thermally forced flows. An example is the Columbia River Valley in east-central Oregon-Washington, a significant wind-energy-generation region and the site of the Second Wind-Forecast Improvement Project (WFIP2). Data from three Doppl...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
This comment is intended to identify an error in the label for Table 7 in Schwartz and Benjamin (1995, hereafter SB95). The label should have read “Statistics for rawinsonde − ACARS matched data…,” meaning that for this sample, rawinsondes were warmer than aircraft data by a mean value of 0.22 K for these ascent/descent aircraft observations fro...
Institution National Oceanic and Atmospheric Administration - NOAA
A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh
The Rapid Refresh (RAP), an hourly-updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly-updated assimilation and modeling sys...
Institution National Oceanic and Atmospheric Administration - NOAA
A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain-following/isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect ...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
The 13-km Rapid Refresh (RAP) and 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) are hourly updating weather forecast models that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation...
Institution National Oceanic and Atmospheric Administration - NOAA
The 13-km Rapid Refresh (RAP) and 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) are hourly updating weather forecast models that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation...
Institution National Oceanic and Atmospheric Administration - NOAA
The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), both operational at NOAA’s National Centers for Environmental Prediction (NCEP) use the Thompson et al. mixed-phase bulk cloud microphysics scheme. This scheme permits predicted surface precipitation to simultaneously consist of rain, snow, and graupel at the same location under c...
Institution National Oceanic and Atmospheric Administration - NOAA
Because of limitations of variational and ensemble data assimilation schemes, resulting analysis fields exhibit some noise from imbalance in subsequent model forecasts. Controlling finescale noise is desirable in the NOAA’s Rapid Refresh (RAP) assimilation/forecast system, which uses an hourly data assimilation cycle. Hence, a digital filter ini...
Institution National Oceanic and Atmospheric Administration - NOAA
The land surface model (LSM) described in this manuscript was originally developed as part of the NOAA Rapid Update Cycle (RUC) model development effort; with ongoing modifications, it is now used as an option for the WRF community model. The RUC model and its WRF-based NOAA successor, the Rapid Refresh (RAP), are hourly updated and have an emph...
Institution National Oceanic and Atmospheric Administration - NOAA
NOAA Holistic Climate and Earth System Model Strategy Phase I: Current State
This report describes Phase I of a two-phase study proposed and organized by the NOAA Climate Program Office (CPO) in early 2014 for the development of a NOAA Holistic Climate and Earth System Modeling Strategy. Defining NOAA’s strategy for global climate and earth system modeling for research and operations allows NOAA’s investments in this are...
Institution National Oceanic and Atmospheric Administration - NOAA
Progress Toward Improved Solar Forecasts in Hourly Updated RAP and HRRR Forecasts
The High-Resolution Rapid Refresh (HRRR) 3km hourly updated model is now being run operationally at NOAA's National Centers for Environmental Prediction (NCEP). A focus on improved cloud/solar forecasts has been central to development of HRRRv2 and HRRRv3 experimental versions, along with the parent 13km Rapid Refresh (RAP). Experimental, advanc...
Institution National Oceanic and Atmospheric Administration - NOAA
An operational upgrade of the RAP and HRRR model systems at NCEP is planned for August 2016. This coordinated upgrade (RAP version 3 and HRRR version 2, RAPv3/HRRRv2) includes many enhancements to the data assimilation, model, and post-processing formulations that result in significant improvements to nearly all forecast aspects, including uppe...
Institution National Oceanic and Atmospheric Administration - NOAA
Relatively little is known about how topography affects convective storms. The first step toward understanding these effects is to investigate how topography affects storm environments. Unfortunately, the effects of topography on convective environments is not easily observed directly. Instead, we resort to using output from the High-Resolution ...
Institution National Oceanic and Atmospheric Administration - NOAA
The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goal of which is to improve the accuracy of short-term (0–6 hr) wind power forecasts for the wind energy industry. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that included the National Oceanic and Atmospheric Administration (NOAA)...
Institutions Earth System Research Laboratory - ESRL National Oceanic and Atmospheric Administration - NOAA
Forecasting lake-/sea-effect snowstorms, advancement, and challenges
Lake-/sea-effect snow forms typically from late fall to winter when a cold air mass moves over the warmer, large water surface. The resulting intense snowfall has many societal impacts on communities living in downwind areas; hence, accurate forecasts of lake-/sea-effect snow are essential for safety and preparedness. Forecasting lake-/sea-effec...
Institution National Oceanic and Atmospheric Administration - NOAA
A technique for model initialization using three-dimensional radar reflectivity data has been developed and applied within the NOAA 13-km Rapid Refresh (RAP) and 3-km High-Resolution Rapid Refresh (HRRR) regional forecast systems. This technique enabled the first assimilation of radar reflectivity data for operational NOAA forecast models, criti...
Institution National Oceanic and Atmospheric Administration - NOAA
The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Weather Research and Forecasting model (WRF-ARW) with hourly data assimilation that covers the conterminous United States and Alaska and runs in real time at the NOAA National Centers for Environmental Prediction. Implemented operationally at NOAA/NCEP in 201...
Institution National Oceanic and Atmospheric Administration - NOAA
The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced Weather Research and Forecast model (WRF-ARW) that covers the conterminous United States and Alaska and runs hourly (for CONUS; every three hours for Alaska) in real time at the National Centers for Environmental Prediction. The high-resolution forec...
Institution National Oceanic and Atmospheric Administration - NOAA
Land–Snow Data Assimilation Including a Moderately Coupled Initialization Method Applied to NWP
Initialization methods are needed for geophysical components of Earth system prediction models. These methods are needed from medium-range to decadal predictions and also for short-range Earth system forecasts in support of safety (e.g., severe weather), economic (e.g., energy), and other applications. Strongly coupled land–atmosphere data assim...
Institution National Oceanic and Atmospheric Administration - NOAA
Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
Application of lake models coupled within earth-system prediction models, especially for predictions from days to weeks, requires accurate initialization of lake temperatures. Commonly used methods to initialize lake temperatures include interpolation of global sea-surface temperature (SST) analyses to inland lakes, daily satellite-based observa...
Institution National Oceanic and Atmospheric Administration - NOAA
The performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SG...
Institution National Oceanic and Atmospheric Administration - NOAA
The Marshall Fire on 30 December 2021 became the most destructive wildfire costwise in Colorado history as it evolved into a suburban firestorm in southeastern Boulder County, driven by strong winds and a snow-free and drought-influenced fuel state. The fire was driven by a strong downslope windstorm that maintained its intensity for nearly 11 h...
Institution National Oceanic and Atmospheric Administration - NOAA
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental United States (CONUS). Spatial heterogeneity in historical incidence, environmental factors, and complex ecology make prediction of spatiotemporal variation in WNV transmission challenging. Machine learning provides promising tools for identification of impor...
Institution National Oceanic and Atmospheric Administration - NOAA