Skip to main content
U.S. flag

An official website of the United States government

Dot Gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

HTTPS

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Statistical Post-processing of 1–14 Day Precipitation Forecasts Over Taiwan

Abstract

The predictability of precipitation is hindered by finer-scale processes not captured explicitly in global numerical models, such as convective interactions, cloud microphysics, and boundary layer dynamics. However, there is growing demand across various sectors for medium- (3–10-day) and extended-range (10–30-day) quantitative precipitation forecasts (QPFs) and probabilistic QPFs (PQPFs). This study uses a novel statistical postprocessing technique, APPM, that combines analog postprocessing (AP) with probability matching (PM) to produce week-1 and week-2 accumulated precipitation forecasts over Taiwan. AP searches for historical predictions that closely resemble the current forecast and create an AP ensemble using the observed high-resolution precipitation patterns corresponding to these forecast analogs. Frequency counting and PM are then separately applied to the AP ensemble to produce calibrated and downscaled PQPFs and bias-reduced QPFs, respectively. Evaluation over a 22-yr (1999–2020) period shows that raw ensemble forecasts from the GEFS of NOAA/NWS/Environmental Modeling Center, collected for the subseasonal experiment, are underdispersive with a wet bias. In contrast, the AP ensemble spread well represents forecast uncertainty, leading to substantially more reliable and skillful probabilistic forecasts. Furthermore, the AP-based PQPF demonstrates superior discrimination ability and yields notably greater economic benefits for a wider range of users, with the maximum economic value increasing by 30%–50% for the week-2 forecast. Compared to the raw ensemble mean forecast, the calibrated QPF exhibits lower mean absolute error and explains 3–8 times more variance in observations. Overall, the APPM technique significantly improves week-1 and week-2 QPFs and PQPFs over Taiwan.

Article / Publication Data
Active/Online
YES
Available Metadata
DOI ↗
Fiscal Year
Peer Reviewed
YES
Publication Name
Journal of Hydrometeorology
Published On
October 01, 2024
Publisher Name
AMS
Print Volume
25
Issue
10
URL ↗

Author

Authors who have authored or contributed to this publication.